Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.979
Filtrar
1.
Neuroimaging Clin N Am ; 34(2): 251-260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604709

RESUMO

Conventional imaging modalities, such as computed tomography angiography, MR angiography, transcranial Doppler ultrasonography, and digital subtraction angiography, are utilized in evaluating intraluminal or intravascular pathology of the intracranial vessels. Limitations of luminal imaging techniques can lead to inaccurate diagnosis, evaluation, and risk stratification, as many cerebrovascular pathologies contain an extrinsic vessel wall component. Furthermore, vessel wall imaging can provide information regarding extent, treatment response, and biopsy targets for vasculitis cases. Overall, while vessel wall imaging can provide robust data regarding intracranial pathologies, further prospective, multicenter studies are required to improve diagnostic application and accuracy.


Assuntos
Aterosclerose , Vasculite , Humanos , Vasculite/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Angiografia Digital , Imageamento por Ressonância Magnética/métodos
2.
Sci Rep ; 14(1): 9245, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649692

RESUMO

Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) can provide radiologists with a more detailed and precise view of these vessels. This paper introduces a domain generalized artificial intelligence (AI) solution for volumetric monitoring of cerebrovascular structures from multi-center MRAs. Our approach utilizes a multi-task deep convolutional neural network (CNN) with a topology-aware loss function to learn voxel-wise segmentation of the cerebrovascular tree. We use Decorrelation Loss to achieve domain regularization for the encoder network and auxiliary tasks to provide additional regularization and enable the encoder to learn higher-level intermediate representations for improved performance. We compare our method to six state-of-the-art 3D vessel segmentation methods using retrospective TOF-MRA datasets from multiple private and public data sources scanned at six hospitals, with and without vascular pathologies. The proposed model achieved the best scores in all the qualitative performance measures. Furthermore, we have developed an AI-assisted Graphical User Interface (GUI) based on our research to assist radiologists in their daily work and establish a more efficient work process that saves time.


Assuntos
Angiografia por Ressonância Magnética , Redes Neurais de Computação , Fluxo de Trabalho , Humanos , Angiografia por Ressonância Magnética/métodos , Inteligência Artificial , Estudos Retrospectivos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
3.
Neurosurg Focus ; 56(3): E10, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428010

RESUMO

OBJECTIVE: Spinal dural arteriovenous fistulas (SDAVFs) often go undiagnosed, leading to irreversible spinal cord dysfunction. Although digital subtraction angiography (DSA) is the gold standard for diagnosing SDAVF, DSA is invasive and operator dependent, with associated risks. MR angiography (MRA) is a promising alternative. This study aimed to evaluate the performance of MRA as an equal alternative to DSA in investigating, diagnosing, and localizing SDAVF. METHODS: Prospectively collected data from a single neurosurgeon at a large tertiary academic center were searched for SDAVFs. Eligibility criteria included any patient with a surgically proven SDAVF in whom preoperative DSA, MRA, or both had been obtained. The eligible patients formed a consecutive series, in which they were divided into DSA and MRA groups. DSA and MRA were the index tests that were compared to the surgical SDAVF outcome, which was the reference standard. Accurate diagnosis was considered to have occurred when the imaging report matched the operative diagnosis to the correct spinal level. Comparisons used a two-sample t-test for continuous variables and Fisher-Freeman-Halton's exact test for categorical variables, with p < 0.05 specifying significance. Univariate, bivariate, and multivariate analyses were conducted to investigate group associations with DSA and MRA accuracy. Positive predictive value, sensitivity, and accuracy were calculated. RESULTS: A total of 27 patients with a mean age of 63 years underwent surgery for SDAVF. There were 19 male (70.4%) and 8 female (29.6%) patients, and the mean duration of symptoms at the time of surgery was 14 months (range 2-48 months). Seventeen patients (63%) presented with bowel or bladder incontinence. Bivariate analysis of the DSA and MRA groups further revealed no significant relationships between the characteristics and accuracy of SDAVF diagnosis. MRA was found to be more sensitive and accurate (100% and 73.3%) than DSA (85.7% and 69.2%), with a subanalysis of the patients with both preoperative MRA and DSA showing that MRA had a greater positive predictive value (78.6 vs 72.7), sensitivity (100 vs 72.7), and accuracy (78.6 vs 57.1) than DSA. CONCLUSIONS: In surgically proven cases of SDAVFs, the authors determined that MRA was more accurate than DSA for SDAVF diagnosis and localization to the corresponding vertebral level. Incomplete catheterization at each vertebral level may result in the failure of DSA to detect SDAVF.


Assuntos
Malformações Vasculares do Sistema Nervoso Central , Angiografia por Ressonância Magnética , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Angiografia por Ressonância Magnética/métodos , Angiografia Digital/métodos , Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Malformações Vasculares do Sistema Nervoso Central/cirurgia , Medula Espinal/diagnóstico por imagem , Medula Espinal/cirurgia , Valor Preditivo dos Testes
4.
Eur Radiol Exp ; 8(1): 30, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472603

RESUMO

BACKGROUND: This study evaluated a deep learning (DL) algorithm for detecting vessel steno-occlusions in patients with peripheral arterial disease (PAD). It utilised a private dataset, which was acquired and annotated by the authors through their institution and subsequently validated by two blinded readers. METHODS: A single-centre retrospective study analysed 105 magnetic resonance angiography (MRA) images using an EfficientNet B0 DL model. Initially, inter-reader variability was assessed using the complete dataset. For a subset of these images (29 from the left side and 35 from the right side) where digital subtraction angiography (DSA) data was available as the ground truth, the model's accuracy and the area under the curve at receiver operating characteristics analysis (ROC-AUC) were evaluated. RESULTS: A total of 105 patient examinations (mean age, 75 years ±12 [mean ± standard deviation], 61 men) were evaluated. Radiologist-DL model agreement had a quadratic weighted Cohen κ ≥ 0.72 (left side) and ≥ 0.66 (right side). Radiologist inter-reader agreement was ≥ 0.90 (left side) and ≥ 0.87 (right side). The DL model achieved a 0.897 accuracy and a 0.913 ROC-AUC (left side) and 0.743 and 0.830 (right side). Radiologists achieved 0.931 and 0.862 accuracies, with 0.930 and 0.861 ROC-AUCs (left side), and 0.800 and 0.799 accuracies, with 0.771 ROC-AUCs (right side). CONCLUSION: The DL model provided valid results in identifying arterial steno-occlusion in the superficial femoral and popliteal arteries on MRA among PAD patients. However, it did not reach the inter-reader agreement of two radiologists. RELEVANCE STATEMENT: The tested DL model is a promising tool for assisting in the detection of arterial steno-occlusion in patients with PAD, but further optimisation is necessary to provide radiologists with useful support in their daily routine diagnostics. KEY POINTS: • This study focused on the application of DL for arterial steno-occlusion detection in lower extremities on MRA. • A previously developed DL model was tested for accuracy and inter-reader agreement. • While the model showed promising results, it does not yet replace human expertise in detecting arterial steno-occlusion on MRA.


Assuntos
Arteriopatias Oclusivas , Doença Arterial Periférica , Masculino , Humanos , Idoso , Meios de Contraste , Angiografia por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Inteligência Artificial , Estudos Retrospectivos , Arteriopatias Oclusivas/diagnóstico
5.
Magn Reson Imaging ; 109: 1-9, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417470

RESUMO

PURPOSE: Two major drawbacks of 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) are the low temporal resolution and long scanning time. We investigated the feasibility of increasing the temporal resolution and accelerating the scanning time on 4D-S-PACK by using CS-SENSE and PhyZiodynamics, a novel image-processing program that interpolates images between phases to generate new phases and reduces image noise. METHODS: Seven healthy volunteers were scanned with a 3.0 T MR scanner to visualize the internal carotid artery (ICA) system. PhyZiodynamics is a novel image-processing that interpolates images between phases to generate new phases and reduces image noise, and by increasing temporal resolution using PhyZiodynamics, inflow dynamic data (reference) were acquired by changing the labeling durations (100-2000 msec, 31 phases) in 4D-S-PACK. From this set of data, we selected seven time intervals to calculate interpolated time points with up to 61 intervals using ×10 for the generation of interpolated phases with PhyZiodynamics. In the denoising process of PhyZiodynamics, we processed the none, low, medium, high noise reduction dataset images. The time intensity curve (TIC), the contrast-to-noise ratio (CNR) were evaluated. In accelerating with CS-SENSE for 4D-S-PACK, 4D-S-PACK were scanned different SENSE or CS-SENSE acceleration factors: SENSE3, CS3-6. Signal intensity (SI), CNR, were evaluated for accelerating the 4D-S-PACK. With regard to arterial vascular visualization, we evaluated the middle cerebral artery (MCA: M1-4 segments). RESULTS: In increasing temporal resolution, the TIC showed a similar trend between the reference dataset and the interpolated dataset. As the noise reduction weight increased, the CNR of the interpolated dataset were increased compared to that of the reference dataset. In accelerating 4D-S-PACK, the SI values of the SENSE3 dataset and CS dataset with CS3-6 were no significant differences. The image noise increased with the increase of acceleration factor, and the CNR decreased with the increase of acceleration factor. Significant differences in CNR were observed between acceleration factor of SENSE3 and CS6 for the M1-4 (P < 0.05). Visualization of small arteries (M4) became less reliable in CS5 or CS6 images. Significant differences were found for the scores of M2, M3 and M4 segments between SENSE3 and CS6. CONCLUSION: With PhyZiodynamics and CS-SENSE in 4D-S-PACK, we were able to shorten the scan time while improving the temporal resolution.


Assuntos
Algoritmos , Angiografia por Ressonância Magnética , Humanos , Marcadores de Spin , Angiografia por Ressonância Magnética/métodos , Artéria Cerebral Média , Aceleração , Imageamento Tridimensional/métodos
6.
Curr Med Imaging ; 20: 1-6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389372

RESUMO

BACKGROUND: Persistent trigeminal artery (PTA) is the most common vascular anastomosis between the carotid artery and vertebrobasilar systems. We report a very rare case of dissecting aneurysm in the right internal carotid artery (ICA) with ipsilateral PTA and discuss its clinical importance. CASE REPORT: A 38-year-old male presented to the emergency department with paroxysmal dysphasia for 6h. Brain magnetic resonance (MR) imaging showed acute cerebral infarction of the right corona radiata and right parietal lobe. Three-dimensional time-of-flight MR angiography (3D TOF MRA) revealed severe stenosis of the petrous segment (C1 portion) of the right internal carotid artery and a PTA originating from the right ICA cavernous segment (C4 portion), with a length of approximately 1.8cm and a diameter of approximately 0.2cm. The ICA segments are all named according to the Bouthilier classification. The basilar artery (BA) under union was well developed. The bilateral posterior communicating arteries were also present. One day later, the high-resolution vessel-wall MR demonstrated a dissecting aneurysm in the C1 portion of the right ICA. The length of the dissecting aneurysm is approximately 4.4cm, the diameter of the true lumen at the most severe stenosis is approximately 0.2cm, and the diameter of the false lumen is approximately 0.8cm. Subsequent digital subtraction angiography (DSA) confirmed a dissecting aneurysm in the C1 portion of the right ICA. The patient was treated conservatively and did not undergo interventional surgery. Four months later, head and neck MRA showed that the right ICA blood flow was smooth and that the dissecting aneurysm had disappeared. The Ethics Committee of Liaocheng People's Hospital approved the research protocol in compliance with the Helsinki Declaration. Written informed consent was obtained from the individual for the publication of any potentially identifiable images or data included in this article. CONCLUSION: Flow alteration with PTA may have influenced the formation of ICA dissection in this patient. Awareness of this is crucial in clinical practice because it can influence treatment options and intervention procedures.


Assuntos
Dissecção Aórtica , Artéria Carótida Interna , Masculino , Humanos , Adulto , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/patologia , Artéria Carótida Interna/cirurgia , Constrição Patológica/patologia , Imageamento por Ressonância Magnética , Angiografia por Ressonância Magnética/métodos , Dissecção Aórtica/complicações , Dissecção Aórtica/diagnóstico por imagem
7.
Surg Radiol Anat ; 46(4): 523-534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38376526

RESUMO

PURPOSE: We aimed to examine the superior mesenteric artery in detail by magnetic resonance angiography to provide an alternative to other imaging methods, to reduce the exposure time of patients and physicians to X-rays and the time spent in catheter angiography, to determine the variations, positions, and locations of the celiac trunk, and to provide detailed information for surgeons and interventional radiologists using this method. METHODS: The procedures were approved by the Kocaeli University Medical School Non-Interventional Clinical Research Ethics Committee (10.04.2023, approval number: 2021/51). MR angiography images of 185 patients with abdominal imaging in PACS (Picture Archiving Communication Systems) were retrospectively registered. The level of origin of the superior mesenteric artery according to the vertebral column, angle of origin, distance between the superior mesenteric artery and branches of the abdominal aorta, and branching pattern of the superior mesenteric artery were evaluated. Parameters were evaluated according to gender and age using SPSS version 25. RESULTS: The distance between superior mesenteric artery-inferior mesenteric artery and superior mesenteric artery-aortic bifurcation in males was higher than in females, and the difference was statistically significant. In females and the whole study group, a low, positive and significant relationship was found between age and superior mesenteric artery-sagittal angle. The most common origin site for the superior mesenteric artery, according to the vertebral column was found to be at L1 middle for males and L1 upper for females. The most common superior mesenteric artery branching pattern was classical type in both genders. CONCLUSION: Individual evaluation of the superior mesenteric artery could reduce the risks during surgical interventions, considering the relationship of the superior mesenteric artery, especially with distally located vessels, and the gender differences for the angle of origin. Furthermore, considering that interventional radiologists choose the catheter according to the angle of origin of the artery during catheter angiography procedures, individual evaluation of patients taking into account gender and age is of utmost importance.


Assuntos
Angiografia por Ressonância Magnética , Artéria Mesentérica Superior , Humanos , Masculino , Feminino , Artéria Mesentérica Superior/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Aorta Abdominal , Artéria Celíaca , Radiografia
8.
PLoS One ; 19(2): e0297314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330070

RESUMO

Cardiac MRI is a crucial tool for assessing congenital heart disease (CHD). However, its application remains challenging in young children when performed at 3T. The aim of this retrospective single center study was to compare a non-contrast free-breathing 2D CINE T1-weighted TFE-sequence with compressed sensing (FB 2D CINE CS T1-TFE) with 3D imaging for diagnostic accuracy of CHD, image quality, and vessel diameter measurements in sedated young children. FB 2D CINE CS T1-TFE was compared with a 3D non-contrast whole-heart sequence (3D WH) and 3D contrast-enhanced MR angiography (3D CE-MRA) at 3T in 37 CHD patients (20♂, 1.5±1.4 years). Two radiologists independently assessed image quality, type of CHD, and diagnostic confidence. Diameters and measures of contrast and sharpness of the aorta and pulmonary vessels were determined. A non-parametric multi-factorial approach was used to estimate diagnostic accuracy for the diagnosis of CHD. Linear mixed models were calculated to compare contrast and vessel sharpness. Krippendorff's alpha was determined to quantify vessel diameter agreement. FB 2D CINE CS T1-TFE was rated superior regarding image quality, diagnostic confidence, and diagnostic sensitivity for both intra- and extracardiac pathologies compared to 3D WH and 3D CE-MRA (all p<0.05). FB 2D CINE CS T1-TFE showed superior contrast and vessel sharpness (p<0.001) resulting in the highest proportion of measurable vessels (740/740; 100%), compared to 3D WH (530/620; 85.5%) and 3D CE-MRA (540/560; 96.4%). Regarding vessel diameter measurements, FB 2D CINE CS T1-TFE revealed the closest inter-reader agreement (Krippendorff's alpha: 0.94-0.96; 3D WH: 0.78-0.94; 3D CE-MRA: 0.76-0.93). FB 2D CINE CS T1-TFE demonstrates robustness at 3T and delivers high-quality diagnostic results to assess CHD in sedated young children. Its ability to function without contrast injection and respiratory compensation enhances ease of use and could encourage widespread adoption in clinical practice.


Assuntos
Meios de Contraste , Cardiopatias Congênitas , Criança , Humanos , Pré-Escolar , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Angiografia por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
9.
Sci Rep ; 14(1): 4490, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396152

RESUMO

This study aimed to assess the performance of arterial-spin labeling MRA (ASL-MRA) for visualizing the external carotid artery (ECA) branches in comparison with time-of-flight MRA (TOF-MRA) and CT angiography (CTA). We retrospectively selected 31 consecutive patients, who underwent both MRAs and CTA, prior to the intra-arterial chemoradiotherapy (IACRT) for head and neck cancer. Four patients underwent IACRT bilaterally, so we analyzed 35 ECAs. Pseudo-continuous, three-dimensional ASL using a turbo field echo sequence was acquired. For the TOF-MRA and CTA, clinically used parameters were applied. Two observers evaluated each ECA branch with reference to the angiogram at the IACRT, using five-point scale, in consensus. Friedman test for multiple comparisons was applied. ASL-MRA and CTA better visualized the superior thyroid, lingual, facial, submental, transverse facial, and internal maxillary arteries (IMAs) better than TOF-MRA (p < 0.05). In addition, CTA was superior to ASL-MRA in visualizing only submental artery among these arteries (p = 0.0005). Alternatively, the ASL-MRA was superior for visualizing the middle meningeal artery (MMA) and IMA, compared to the CTA (p = 0.0001 and 0.0007, respectively). ASL-MRA was superior to the TOF-MRA and similar to the CTA in visualizing most of ECA branches. Furthermore, ASL-MRA can better visualize the periphery of MMA and IMA than CTA.


Assuntos
Artéria Carótida Externa , Angiografia por Ressonância Magnética , Humanos , Artéria Carótida Externa/diagnóstico por imagem , Marcadores de Spin , Estudos Retrospectivos , Angiografia por Ressonância Magnética/métodos , Artérias
10.
Ann Biomed Eng ; 52(5): 1335-1346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341399

RESUMO

Blood pressure gradient ( Δ P ) across an aortic coarctation (CoA) is an important measurement to diagnose CoA severity and gauge treatment efficacy. Invasive cardiac catheterization is currently the gold-standard method for measuring blood pressure. The objective of this study was to evaluate the accuracy of Δ P estimates derived non-invasively using patient-specific 0D and 3D deformable wall simulations. Medical imaging and routine clinical measurements were used to create patient-specific models of patients with CoA (N = 17). 0D simulations were performed first and used to tune boundary conditions and initialize 3D simulations. Δ P across the CoA estimated using both 0D and 3D simulations were compared to invasive catheter-based pressure measurements for validation. The 0D simulations were extremely efficient ( ∼ 15 s computation time) compared to 3D simulations ( ∼ 30 h computation time on a cluster). However, the 0D Δ P estimates, unsurprisingly, had larger mean errors when compared to catheterization than 3D estimates (12.1 ± 9.9 mmHg vs 5.3 ± 5.4 mmHg). In particular, the 0D model performance degraded in cases where the CoA was adjacent to a bifurcation. The 0D model classified patients with severe CoA requiring intervention (defined as Δ P ≥ 20 mmHg) with 76% accuracy and 3D simulations improved this to 88%. Overall, a combined approach, using 0D models to efficiently tune and launch 3D models, offers the best combination of speed and accuracy for non-invasive classification of CoA severity.


Assuntos
Coartação Aórtica , Humanos , Coartação Aórtica/diagnóstico por imagem , Pressão Sanguínea , Angiografia por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo , Simulação por Computador
11.
ACS Appl Mater Interfaces ; 16(8): 9702-9712, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363797

RESUMO

Magnetic resonance angiography (MRA) contrast agents are extensively utilized in clinical practice due to their capability of improving the image resolution and sensitivity. However, the clinically approved MRA contrast agents have the disadvantages of a limited acquisition time window and high dose administration for effective imaging. Herein, albumin-coated gadolinium-based nanoparticles (BSA-Gd) were meticulously developed for in vivo ultrahigh-resolution MRA. Compared to Gd-DTPA, BSA-Gd exhibits a significantly higher longitudinal relaxivity (r1 = 76.7 mM-1 s-1), nearly 16-fold greater than that of Gd-DTPA, and an extended blood circulation time (t1/2 = 40 min), enabling a dramatically enhanced high-resolution imaging of microvessels (sub-200 µm) and low dose imaging (about 1/16 that of Gd-DTPA). Furthermore, the clinically significant fine vessels were successfully mapped in large mammals, including a circle of Willis, kidney and liver vascular branches, tumor vessels, and differentiated arteries from veins using dynamic contrast-enhanced MRA BSA-Gd, and have superior imaging capability and biocompatibility, and their clinical applications hold substantial promise.


Assuntos
Angiografia por Ressonância Magnética , Nanopartículas , Animais , Angiografia por Ressonância Magnética/métodos , Gadolínio DTPA , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos , Mamíferos
12.
Magn Reson Imaging ; 108: 22-28, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309377

RESUMO

The integrity of vessel walls and changes in blood flow are involved in many diseases, and information about these anatomical and physiological conditions is important for a diagnosis. There are several different angiography methods that can be used to generate images for diagnostic purposes, but often using different imaging techniques and MR sequences. The purpose of this study was to develop a method that allows time-resolved, vessel-selective simultaneous bright and black blood imaging by vesselselective blood saturation. Measurements in six volunteers were performed to evaluate the time-resolved bright blood angiography and the significance of the generated black blood contrast. It was shown that this method can be used to generate a black blood contrast with a sufficient signal difference to the surrounding gray matter in addition to the time-resolved and vessel-selective bright blood contrast. Using post-processing methods, whole brain angiograms can be calculated from the acquired data.


Assuntos
Angiografia , Angiografia por Ressonância Magnética , Humanos , Radiografia , Angiografia por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos
13.
Comput Biol Med ; 171: 107987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350395

RESUMO

OBJECTIVE: Alignment between preoperative images (high-resolution magnetic resonance imaging, magnetic resonance angiography) and intraoperative medical images (digital subtraction angiography) is currently required in neurointerventional surgery. Treating a lesion is usually guided by a 2D DSA silhouette image. DSA silhouette images increase procedure time and radiation exposure time due to the lack of anatomical information, but information from MRA images can be utilized to compensate for this in order to improve procedure efficiency. In this paper, we abstract this into the problem of relative pose and correspondence between a 3D point and its 2D projection. Multimodal images have a large amount of noise and anomalies that are difficult to resolve using conventional methods. According to our research, there are fewer multimodal fusion methods to perform the full procedure. APPROACH: Therefore, the paper introduces a registration pipeline for multimodal images with fused dual views is presented. Deep learning methods are introduced to accomplish feature extraction of multimodal images to automate the process. Besides, the paper proposes a registration method based on the Factor of Maximum Bounds (FMB). The key insights are to relax the constraints on the lower bound, enhance the constraints on the upper bounds, and mine more local consensus information in the point set using a second perspective to generate accurate pose estimation. MAIN RESULTS: Compared to existing 2D/3D point set registration methods, this method utilizes a different problem formulation, searches the rotation and translation space more efficiently, and improves registration speed. SIGNIFICANCE: Experiments with synthesized and real data show that the proposed method was achieved in accuracy, robustness, and time efficiency.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Angiografia Digital/métodos , Imageamento Tridimensional/métodos , Algoritmos
14.
Comput Biol Med ; 170: 107996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266465

RESUMO

PURPOSE: Cerebrovascular segmentation and quantification of vascular morphological features in humans and rhesus monkeys are essential for prevention, diagnosis, and treatment of brain diseases. However, current automated whole-brain vessel segmentation methods are often not generalizable to independent datasets, limiting their usefulness in real-world environments with their heterogeneity in participants, scanners, and species. MATERIALS AND METHODS: In this study, we proposed an automated, accurate and generalizable segmentation method for magnetic resonance angiography images called FFCM-MRF. This method integrated fast fuzzy c-means clustering and Markov random field optimization by vessel shape priors and spatial constraints. We used a total of 123 human and 44 macaque MRA images scanned at 1.5 T, 3 T, and 7 T MRI from 9 datasets to develop and validate the method. RESULTS: FFCM-MRF achieved average Dice similarity coefficients ranging from 69.16 % to 89.63 % across multiple independent datasets, with improvements ranging from 3.24 % to 7.3 % compared to state-of-the-art methods. Quantitative analysis showed that FFCM-MRF can accurately segment major arteries in the Circle of Willis at the base of the brain and small distal pial arteries while effectively reducing noise. Test-retest analysis showed that the model yielded high vascular volume and diameter reliability. CONCLUSIONS: Our results have demonstrated that FFCM-MRF is highly accurate and reliable and largely independent of variations in field strength, scanner platforms, acquisition parameters, and species. The macaque MRA data and user-friendly open-source toolbox are freely available at OpenNeuro and GitHub to facilitate studies of imaging biomarkers for cerebrovascular and neurodegenerative diseases.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Humanos , Animais , Angiografia por Ressonância Magnética/métodos , Macaca mulatta , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Algoritmos
15.
Magn Reson Med ; 91(6): 2320-2331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38173296

RESUMO

PURPOSE: Background suppression (BS) is recommended in arterial spin labeling (ASL) for improved SNR but is difficult to optimize in existing velocity-selective ASL (VSASL) methods. Dual-module VSASL (dm-VSASL) enables delay-insensitive, robust, and SNR-efficient perfusion imaging, while allowing efficient BS, but its optimization has yet to be thoroughly investigated. METHODS: The inversion effects of the velocity-selective labeling pulses, such as velocity-selective inversion (VSI), can be used for BS, and were modeled for optimizing BS in dm-VSASL. In vivo experiments using dual-module VSI (dm-VSI) were performed to compare two BS strategies: a conventional one with additional BS pulses and a new one without any BS pulse. Their BS performance, temporal noise, and temporal SNR were examined and compared, with pulsed and pseudo-continuous ASL (PASL and PCASL) as the reference. RESULTS: The in vivo experiments validated the BS modeling. Strong positive linear correlations (r > 0.82, p < 0.0001) between the temporal noise and the tissue signal were found in PASL/PCASL and dm-VSI. Optimal BS can be achieved with and without additional BS pulses in dm-VSI; the latter improved the ASL signals by 8.5% in gray matter (p = 0.006) and 12.2% in white matter (p = 0.014) and tended to provide better temporal SNR. The dm-VSI measured significantly higher ASL signal (p < 0.016) and temporal SNR (p < 0.018) than PASL and PCASL. Complex reconstruction was found necessary with aggressive BS. CONCLUSION: Guided by modeling, optimal BS can be achieved without any BS pulse in dm-VSASL, further improving the ASL signal and the SNR performance.


Assuntos
Angiografia por Ressonância Magnética , Substância Branca , Angiografia por Ressonância Magnética/métodos , Marcadores de Spin , Artérias/diagnóstico por imagem , Substância Cinzenta , Circulação Cerebrovascular , Encéfalo/diagnóstico por imagem
16.
Clin Imaging ; 107: 110088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277858

RESUMO

PURPOSE: To evaluate relative and absolute utilization trends and practice patterns in the United States for MRA and CTA. METHODS: Using Medicare Part B physician payment databases (2013-2020), MRA and CTA interpreting physicians and exams were identified using the unique MRA and CTA Healthcare Common Procedure Coding System codes. The number of exams, physicians, demographics, use of contrast, and payments were summarized annually and analyzed to evaluate trends before and during the first year of the COVID-19 pandemic. RESULTS: From 2013 to 2019, the annual number of MRA exams performed decreased by 17.9 %, while the number of CTA exams increased by 90.3 %. The number of physicians interpreting MRA decreased in both hospital (-17.2 %) and outpatient (-7.5 %) environments. The number of physicians interpreting CTA increased in both hospital (+29.4 %) and outpatient (+54.3 %) environments. During the first year of the COVID-19 pandemic, MRA utilization decreased across all imaging environments by 25.0 % whereas CTA only decreased by 5.5 %. Intracranial MRA studies were most often performed without contrast, while contrast use for neck MRA was performed at similar rates as non-contrast exams. CONCLUSION: The overall utilization of MRA and the number of interpreting physicians are decreasing. On the other hand, CTA use and its number of interpreting physicians are increasing. During the first year of the COVID-19 pandemic, use of both MRA and CTA decreased, but the utilization of MRA decreased at five times the rate of CTA.


Assuntos
COVID-19 , Medicare Part B , Idoso , Humanos , Estados Unidos/epidemiologia , Angiografia por Tomografia Computadorizada , Angiografia por Ressonância Magnética/métodos , Pandemias , Espectroscopia de Ressonância Magnética , COVID-19/epidemiologia
17.
Magn Reson Imaging ; 107: 80-87, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237694

RESUMO

PURPOSE: To improve the scan efficiency of thoracic aorta vessel wall imaging using a self-gating (SG)-based motion correction scheme. MATERIALS AND METHODS: A slab-selective variable-flip-angle 3D turbo spin-echo (SPACE) sequence was modified to acquire SG signals and imaging data. Cartesian sampling with a tiny golden-step spiral profile ordering was used to obtain the imaging data during the systolic period, and then the image data were subsequently corrected based on the SG signals and binned to different respiratory cycles. Finally, respiratory artifacts were estimated from image-based registration of 3D undersampled respiratory bins that were reconstructed with L1 iterative self-consistent parallel imaging reconstruction (SPIRiT). This method was evaluated in 11 healthy volunteers and compared against conventional diaphragmatic navigator-gated acquisition to assess the feasibility of the proposed framework. RESULTS: Results showed that the proposed method achieved image quality comparable to that of conventional diaphragmatic navigator-gated acquisition with an average scan time of 4 min. The sharpness of the vessel wall and the definition of the liver boundary were in good agreement with the navigator-gated acquisition, which took approximately above 8.5 min depend on the respiratory rate. Further valuation of this technique in patients will be conducted to determine its clinical use.


Assuntos
Aorta Torácica , Técnicas de Imagem de Sincronização Respiratória , Humanos , Aorta Torácica/diagnóstico por imagem , Imageamento Tridimensional/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Respiração , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos
18.
Neuroimage ; 286: 120506, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185186

RESUMO

Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art ASL quantification.


Assuntos
Processamento de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Marcadores de Spin , Teorema de Bayes , Angiografia por Ressonância Magnética/métodos , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos
19.
J Stroke Cerebrovasc Dis ; 33(3): 107558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262100

RESUMO

AIM: We aimed to investigate the relationship between systemic inflammatory response index (SIRI) and intracranial plaque features, as well as the risk factors related to the severity and recurrence of cerebral ischemic events. METHODS: We enrolled 170 patients with cerebral ischemic events. Baseline demographic characteristics and laboratory indicators were collected from all participants. All patients were assessed by high-resolution magnetic resonance vessel wall imaging for culprit plaque characteristics and intracranial atherosclerotic burden. Outpatient or telephone follow-up were conducted at 1, 3, and 6 months after discharge. RESULTS: SIRI levels were significantly associated with the enhanced plaque number (r = 0.205, p = 0.007), total plaque stenosis score (r = 0.178, p = 0.020), total plaque enhancement score (r = 0.222, p = 0.004), intraplaque hemorrhage (F = 5.630, p = 0.004), and plaque surface irregularity (F = 3.986, p = 0.021). Higher SIRI levels (OR = 1.892), total plaque enhancement score (OR = 1.392), intraplaque hemorrhage (OR = 3.370) and plaque surface irregularity (OR = 2.846) were independent risk factors for moderate-severe stroke, and these variables were significantly positively correlated with NIHSS (P < 0.05 for all). In addition, higher age (HR = 1.063, P = 0.015), higher SIRI levels (HR = 2.003, P < 0.001), and intraplaque hemorrhage (HR = 4.482, P = 0.008) were independently associated with recurrent stroke. CONCLUSIONS: Higher SIRI levels may have adverse effects on the vulnerability and burden of intracranial plaques, and links to the severity and recurrence of ischemic events. Therefore, SIRI may provide important supplementary information for evaluating intracranial plaque stability and risk stratification of patients.


Assuntos
Arteriosclerose Intracraniana , Placa Aterosclerótica , Acidente Vascular Cerebral , Humanos , Angiografia por Ressonância Magnética/métodos , Acidente Vascular Cerebral/etiologia , Imageamento por Ressonância Magnética/efeitos adversos , Placa Aterosclerótica/complicações , Hemorragia/complicações , Síndrome de Resposta Inflamatória Sistêmica/complicações , Arteriosclerose Intracraniana/complicações , Arteriosclerose Intracraniana/diagnóstico por imagem , Arteriosclerose Intracraniana/patologia
20.
Neuroimage ; 286: 120504, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38216104

RESUMO

Small cerebral blood vessels are largely inaccessible to existing clinical in vivo imaging technologies. This study aims to present a novel analysis pipeline for vessel density mapping of small cerebral blood vessels from high-resolution 3D black-blood MRI at 3T. Twenty-eight subjects (10 under 35 years old, 18 over 60 years old) were imaged with the T1-weighted turbo spin-echo with variable flip angles (T1w TSE-VFA) sequence optimized for black-blood small vessel imaging with iso-0.5 mm spatial resolution (interpolated from 0.51×0.51×0.64 mm3) at 3T. Hessian-based vessel segmentation methods (Jerman, Frangi and Sato filter) were evaluated by vessel landmarks and manual annotation of lenticulostriate arteries (LSAs). Using optimized vessel segmentation, large vessel pruning and non-linear registration, a semiautomatic pipeline was proposed for quantification of small vessel density across brain regions and further for localized detection of small vessel changes across populations. Voxel-level statistics was performed to compare vessel density between two age groups. Additionally, local vessel density of aged subjects was correlated with their corresponding gross cognitive and executive function (EF) scores using Montreal Cognitive Assessment (MoCA) and EF composite scores compiled with Item Response Theory (IRT). Jerman filter showed better performance for vessel segmentation than Frangi and Sato filter which was employed in our pipeline. Small cerebral blood vessels including small artery, arterioles, small veins, and venules on the order of a few hundred microns can be delineated using the proposed analysis pipeline on 3D black-blood MRI at 3T. The mean vessel density across brain regions was significantly higher in young subjects compared to aged subjects. In the aged subjects, localized vessel density was positively correlated with MoCA and IRT EF scores. The proposed pipeline is able to segment, quantify, and detect localized differences in vessel density of small cerebral blood vessels based on 3D high-resolution black-blood MRI. This framework may serve as a tool for localized detection of small vessel density changes in normal aging and cerebral small vessel disease.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Angiografia por Ressonância Magnética/métodos , Artéria Cerebral Média , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...